

Equilibrium and transport properties of the quark-gluon plasma at the BES

JORGE NORONHA University of São Paulo

with R. Critelli, I. Portillo, R. Rougemont, J. Noronha-Hostler, and C. Ratti

PRL 115 (2015), JHEP 1604 (2016) 102, arXiv:1704.05558, arXiv:1706.00455

RHIC & AGS Annual Users' Meeting, BNL, June 2017

Quark-gluon plasma: The primordial liquid

QCD → confinement + asymptotic freedom

Quark-Gluon Plasma

Plot from Noronha-Hostler, Betz, Gyulassy, JN, PRL 2016

Perfect fluidity: $\frac{\eta}{s} < 0.2 \rightarrow$ emergent property of QCD at large T and ~ zero net baryon density !

What happens to the primordial liquid in the baryon rich regime?

$$T\sim 100-150\,{\rm MeV}$$

$$\frac{\mu_B}{T} > 3$$

QCD Phase diagram

Current cartoon showing the different phases of QCD

THE REST OF THE PHASE DIAGRAM IS NOT KNOWN

WHY ??

(3d Ising universality class)

The Fermi sign problem

Many-body systems at finite density: The Fermi sign problem

Equilibrium quantities computed using Monte-Carlo method

$$\langle \mathcal{M} \rangle = \frac{1}{Z} \int \mathcal{D}\Phi \, \mathcal{M}[\Phi] \, \exp\{-S[\Phi]\} \longrightarrow \langle \mathcal{M} \rangle = \frac{1}{N} \sum_{c} \mathcal{M}[\Phi^{(c)}]$$

Sample $\Phi^{(c)}$ using $\operatorname{Prob}[\Phi] = e^{-S[\Phi]}/Z$

Fundamental problem when S is complex

This occurs in QCD at nonzero baryon chemical potential

even though
$$Z(T,\mu_B)$$
 is well defined

$$\mu_B \neq 0$$

Consequences of the Fermi sign problem in QCD

Hadronic Gas

Baryon Chemical Potential µ_B

- Majority of QCD phase diagram:
 unknown
- EOS of QCD matter in the core of compact stars: unknown
- Location of high T critical point: unknown

heavy ion collisions (e.g., STAR)

Immense discovery potential for the RHIC Beam Energy Scan (BES)

Major experimental effort to search for the critical point using

QCD thermodynamics from a Taylor expansion

Expand the QCD partition function

$$Z(\mu_B, T) = \operatorname{Tr}\left(e^{-\frac{H_{\text{QCD}} - \mu_B N_B}{T}}\right) = \int \mathcal{D}U e^{-S_G[U]} \det M[U, \mu_B]$$

in a Taylor series around $\mu_B = 0$

See S. Sharma's talk, Wed

$$\frac{P(T,\mu_B) - P(T,0)}{T^4} = \sum_{n=1}^{\infty} \frac{1}{(2n)!} \chi_{2n}(T) \left(\frac{\mu_B}{T}\right)^{2n}$$

Baryon susceptibilities

$$\chi_n^B(T, \mu_B) = \frac{\partial^n (P/T^4)}{\partial (\mu_B/T)^n}$$

Few coefficients are known still at $\mu_B = 0$

QGP transport coefficients in the baryon rich regime

Now
$$\frac{\eta}{s}=\frac{\eta}{s}(T,\mu_B)$$
 and $\frac{\zeta}{s}=\frac{\zeta}{s}(T,\mu_B)$ + new transport coefficients (bulk)

- Conserved currents: baryon, strange, electric $J_B^\mu,\,J_S^\mu,\,J_Q^\mu$

HIC $\mu_B > \mu_S > \mu_Q$

Diffusion of a conserved charge (e.g., baryon)

$$\left(\frac{\partial}{\partial t} - D_B \nabla^2 + \ldots\right) \rho_B = 0$$

 D_B Baryon diffusion

 σ_B Baryon conductivity

EMBEDDED IN HYDRODYNAMICS

Diffusion process

$$D = \frac{\sigma}{\chi_2}$$

How does one describe (nearly) perfect fluidity in a baryon rich QGP?

Model requirements:

- Deconfinement

Nearly perfect fluidity

- Agreement with lattice thermodynamics around crossover

- Agreement with lattice results for baryon susceptibilities at M zero baryon density

A WAY TO FULLFIL THESE CONDITIONS → BLACK HOLES

In science, it is better to ask for forgiveness than permission

Holography (gauge/string duality)

Maldacena 1997; Witten 1998; Gubser, Polyakov, Klebanov 1998

Strong coupling limit of QFT in 4 dimensions

String Theory/Classical gravity in d>4 dimensions

HOLOGRAPHIC PRINCIPLE

Universality and perfect fluidity

Natural framework for perfect fluidity

$$\frac{\eta}{s} = \frac{1}{4\pi}$$

The holographic correspondence at finite temperature and density

Near-equilibrium fluctuations in the plasma ~ black brane fluctuations !!!!

Thermodynamics / fluid dynamics from black hole physics

Quasiparticle dynamics replaced by geometry

Black hole engineering and the non-conformal QGP

Minimal 5d holographic effective theory for a non-conformal plasma

Gubser et al. 2008 Kiritsis et al, 2008 Noronha, 2009

$$S_{\mathrm{ES}}^{(\mathrm{bulk})} = rac{1}{16\pi G_5} \int_{\mathcal{M}_5} d^5 x \sqrt{-g} \left[R - rac{(\partial_M \Phi)^2}{2} - V(\Phi)
ight]$$

 Φ is the scalar field and $V(\Phi)$ is the scalar potential

Black hole engineering and the non-conformal QGP

Excellent match to lattice results around crossover (zero baryon density)

arXiv:1706.00455

Black hole engineering and the non-conformal QGP

arXiv:1704.05558

Transport coefficients

15+ other transport coefficients have also been computed

PRD 89 (2014), JHEP 1502 (2015), JHEP 1604 (2016), PRL 115 (2015)

"Doping" the holographic QGP with quarks

from R. Rougemont, J. Noronha-Hostler, JN, PRL 2015

baryon charge $ightarrow \; Q_B \;\;\;\; \mu_B
eq 0$

Charged black hole

Model matches latest lattice Taylor series results

arXiv:1706.00455

Lattice = A. Bazavov et al. Phys. Rev. D 95 (2017)

Dynamical vs. Equilibrium Properties of the Phase Transition

arXiv:1704.05558

How do these characteristic temperatures change with nonzero quark doping?

Dynamical vs. Equilibrium Properties of the Phase Transition

arXiv:1704.05558

Transport of strangeness

Strangeness susceptibility

Strangeness conductivity

Realistic calculations of baryon susceptibilities

Non-conformal holographic gravity dual in 5 dimensions

$$\mathcal{S} = \frac{1}{16\pi G_5} \int \mathrm{d}x^5 \sqrt{-g} \left[\mathcal{R} - \frac{1}{2} (\partial_M \phi)^2 - V(\phi) \right]$$

 $V(\phi)$ nonconformal

Black Hole Solution

$$-\frac{1}{4}\underbrace{f(\phi)F_{MN}^{2}}_{\text{mal}}]$$

Charged black hole arXiv:1706.00455

$$\frac{\rho_B(T, \mu_B)}{T^3} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)!} \chi_{2n}(T) \left(\frac{\mu_B}{T}\right)^{2n-1}$$

2 million numerical black hole solutions!!

Location of the QCD critical point from black hole physics

Baryon susceptibility χ_2 diverges at: $T_{CEP} = 89 \text{ MeV}, \quad \mu_B^{CEP} = 724 \text{ MeV}$

Prediction from black hole engineering

arXiv:1706.00455

Cumulants of the multiplicity of net baryons

$$\kappa\sigma^2\sim rac{\chi_4^B}{\chi_2^B}$$

Critical point located at:

$$\sqrt{s} = 2.5 - 4.1 \text{ GeV}$$

Non-monotonic behavior depends on chemical freeze-out trajectory (outside critical region)

This behavior can be checked at RHIC BES II. Other experiments?

Exclusion diagram for the location of the critical point

Diagram based on results from

- A. Bazavov et al. Phys. Rev. D 95 (2017)
- Fraga, Palhares, Sorensen, Phys. Rev. C84 (2011)
- R. Bellwied et al., Phys. Lett. B751 (2015)

Suppression of baryon diffusion at the BES II

At critical point
$$\chi_2 o \infty \Longrightarrow D_B o 0$$

Factor ~ 10 reduction in baryon diffusion at the BES II

Experimental / Phenomenological consequences??

Conclusions

- Physics of (holographic) black holes predict a critical point at

$$T_{CEP} = 89 \text{ MeV}, \quad \mu_B^{CEP} = 724 \text{ MeV}$$

- This corresponds to $\sqrt{s}=2.5-4.1~{
 m GeV}$
- Baryon charge gets "stuck" in the BES QGP liquid
- Characteristic temperatures of equilibrium and dynamical quantities have a wide spread in the crossover region
- Transport coefficients at zero baryon density within current estimates from hydro models (Bayesian analysis)

EXTRA SLIDES

Dependence on the chemical freeze-out trajectory

- Start with a nontrivial UV fixed point strongly interacting CFT.
- Add a relevant scalar operator → nontrivial IR behavior
- The scalar potential is an **input** of the theory

$$V(\Phi) = \frac{-12\cosh\gamma\Phi + b_2\Phi^2 + b_4\Phi^4 + b_6\Phi^6}{L^2}$$

$$\gamma = 0.63, b_2 = 0.65, b_4 = -0.05, b_6 = 0.003$$

completely fixed by requiring that the model describes lattice QCD results at finite T (and zero baryon density)

- Why is this useful for QGP physics?

Retarded correlator of the energy-momentum tensor $\,G_{R}^{xy,xy}\,$

Universality and perfect fluidity

 $\lambda \gg 1$ in QFT \rightarrow string theory in weakly curved backgrounds

d.o.f. / vol. $\rightarrow \infty$ in QFT \rightarrow vanishing string coupling

 $T, \, \mu$ in QFT $\,
ightarrow \,$ spatially isotropic black brane

For anisotropic models there is violation see arXiv:1406.6019

$$\frac{\eta}{s} = \frac{1}{4\pi}$$

Universality of shear viscosity

Kovtun, Son, Starinets, PRL 2005

Universality of black hole horizons

HOLOGRAPHY

Universality of transport coefficient in QFT

Connecting the BES scan to theory

Fluctuations of net protons (STAR)

mean: $M = \chi_1$

variance : $\sigma^2 = \chi_2$

Cumulants of eventby-event distributions

skewness : $S = \chi_3/\chi_2^{3/2}$

kurtosis : $\kappa = \chi_4/\chi_2^2$

 $S\sigma = \chi_3/\chi_2$

 $\kappa \sigma^2 = \chi_4/\chi_2$

Data / theory comparison

$$M/\sigma^2 = \chi_1/\chi_2$$

$$S\sigma^3/M = \chi_3/\chi_1$$

Current status from BES experimental data

This quantity should be large near the critical point

$$\kappa \sigma^2 = C_4/C_2$$

Ratio of cumulants of net proton distributions

$$\kappa \sigma^2 \sim \frac{\chi_4^B}{\chi_2^B}$$

Baryon number susceptibilities

$$\chi_n^B(T, \mu_B) = \frac{\partial^n (P/T^4)}{\partial (\mu_B/T)^n}$$

Many-body systems at finite density: The Fermi sign problem

This problem appears in QCD at nonzero baryon chemical potential

Even though $Z(T,\mu_B)$ is well defined

$$\mu_B \neq 0$$

Example:
$$\int_{-\infty}^{\infty} dx \, e^{-(x+ia)^2/4} = 2\sqrt{\pi}$$

argument from G. Basar

Many-body problem with exponential complexity

Troyer, Wiese, PRL 94, 170201 (2005)

Chemical freezeout parameters extracted from comparison to data

Chemical freezeout parameters extracted from comparison to data

Numerical solution of Einstein's equations

$$\phi''(r) + \left[\frac{h'(r)}{h(r)} + 4A'(r) - B'(r)\right]\phi'(r) - \frac{e^{2B(r)}}{h(r)}\left[\frac{\partial V(\phi)}{\partial \phi} - \frac{e^{-2[A(r) + B(r)]}\Phi'(r)^2}{2}\frac{\partial f(\phi)}{\partial \phi}\right] = 0, \quad (S5)$$

$$\Phi''(r) + \left[2A'(r) - B'(r) + \frac{d \left[\ln (f(\phi)) \right]}{d\phi} \phi'(r) \right] \Phi'(r) = 0, \text{ (S6)}$$

$$A''(r) - A'(r)B'(r) + \frac{\phi'(r)^2}{6} = 0$$
, (S7)

$$h''(r) + [4A'(r) - B'(r)]h'(r) - e^{-2A(r)}f(\phi)\Phi'(r)^{2} = 0, \text{ (S8)}$$

$$h(r)[24A'(r)^{2} - \phi'(r)^{2}] + 6A'(r)h'(r) + 2e^{2B(r)}V(\phi) + e^{-2A(r)}f(\phi)\Phi'(r)^{2} = 0, \text{ (S9)}$$

Black hole parameters

ε 2 0.0 0.1 0.2 0.3 0.4 Φ₁/Φ₁^{max}

Gauge theory

Universality class of QCD critical point

	Mean field	3D Ising	Experiment
α	0	0.110(5)	0.110 - 0.116
β	1/2	0.325 ± 0.0015	0.316 - 0.327
γ	1	1.2405 ± 0.0015	1.23 - 1.25
δ	3	4.82(4)	4.6 - 4.9

$$\Omega = \int d^3 \boldsymbol{x} \left[\frac{(\boldsymbol{\nabla} \sigma)^2}{2} + \frac{m_\sigma^2}{2} \sigma^2 + \frac{\lambda_3}{3} \sigma^3 + \frac{\lambda_4}{4} \sigma^4 + \ldots \right]$$

QCD → 3d Ising universality class

$$C_{\rho} \sim |T - T_c|^{-\alpha}$$
, $\chi_2 \sim |T - T_c|^{-\gamma}$,

$$\Delta
ho \sim (T_c - T)^{\beta}$$
, $\rho -
ho_c \sim |\mu - \mu_c|^{1/\delta}$,

Skellam

The probability mass function for the Skellam distribution for a difference $K=N_1-N_2$ between two independent Poisson-distributed random variables with means μ_1 and μ_2 is given by:

$$p(k;\mu_1,\mu_2) = \Pr\{K=k\} = e^{-(\mu_1+\mu_2)} igg(rac{\mu_1}{\mu_2}igg)^{k/2} I_k(2\sqrt{\mu_1\mu_2})$$

How do we "measure" the fluidity of the QGP? Flow Anisotropies

Strongly interacting QGP

$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left[1 + \sum_n 2v_n \cos\left[n(\phi - \psi_n)\right] \right]$$

Flow harmonics

Elliptic flow triangular flow

The real problem of (2) now is the numerator ...

"Holy Grail"

Retarded energy-momentum tensor correlator

$$\eta = i \partial_{\omega} G_R^{xyxy}(\omega, \mathbf{0}) \Big|_{\omega=0}$$

- Cannot be computed directly on the lattice.
- No one currently knows how to compute this in QCD in its full glory.

What about weak coupling QCD?

Sufficiently large T + asympt. freedom = QGP is a gas

$$g \ll 1 \ \eta \sim rac{T^3}{g^4 \ln 1/g}$$

Not a perfect fluid!!!

Phenomenological models

See J. Noronha-Hostler, arXiv:1512.06315

Large uncertainty !!!

At strong coupling, a quasiparticle description is not useful

A new organizing principle is needed.

Perfect fluidity should naturally follow directly from it.

Holography is the only approach where this occurs

Once you eliminate the impossible, whatever remains, no matter how improbable, must be the truth.

Perfect fluidity is an inherent feature of holography

This was all we needed < 2010. The QGP was modeled to be

Smooth over scales of the order ~ 5 -10 fm

Conformal dynamics, arepsilon=3P

macro
$$\partial \varepsilon / \varepsilon_0 \sim 1/L$$

micro
$$\ell \sim 1/T \sim 1/\Lambda_{QCD}$$

Knudsen number

$$K_N \sim \ell \,\partial \varepsilon < 0.1$$

Fluid dynamics at scales of the size of a large nucleus

Reasonable separation of scales

$$K_N \sim \ell \,\partial \varepsilon < 0.1$$

QGP as a relativistic dissipative fluid

$$\nabla_{\mu}T^{\mu\nu} = 0$$

conservation law

$$T^{\mu
u} = arepsilon \, u^\mu u^
u + P \Delta^{\mu
u} + \pi^{\mu
u}$$
 Inviscid part Dissipative part

Relativistic Navier-Stokes: $\pi^{\mu\nu} = -\eta \sigma^{\mu\nu} + \mathcal{O}(\partial^2 \varepsilon, \partial^2 u)$

assumed to be small

Shear tensor Flow velocity

 $\sigma_{\mu\nu} = 2\Delta^{\alpha\beta}_{\mu\nu}\nabla_{\alpha}u_{\beta} \qquad u_{\mu}u^{\mu} = -1$

After 2010, discovery of higher order harmonics of the QGP

Figure from LRPNS 2015

This has sparked a "Fourier" revolution in heavy ion collisions

Shear viscosity

S. Finazzo, R. Rougemont, H. Marrochio, JN, JHEP 1502 (2015) 051

Universality of isotropic black brane horizons (KSS PRL 2005)

$$\eta/s = 1/(4\pi)$$

Kubo formula

$$\eta = -\lim_{q \to 0} \lim_{\omega \to 0} \operatorname{Im} \left[\frac{\partial G_R^{xy,xy}(\omega,q)}{\partial \omega} \right]$$

$$G_R^{xy,xy}(\omega,\vec{q}) = -i \int_{\mathbb{R}^{1,3}} d^4x \, e^{i(\omega t - \vec{q} \cdot \vec{x})} \, \theta(t) \langle [\hat{T}^{xy}(t,\vec{x}), \hat{T}^{xy}(0,\vec{0})] \rangle$$

- Value in the correct ballpark for heavy ions.
- This fails away from "the Goldilocks temperature zone"

Bulk viscosity

S. Finazzo, R. Rougemont, H. Marrochio, JN, JHEP 1502 (2015) 051

The Kubo formula is
$$\zeta = -\frac{4}{9}\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} \left[G_R(\omega, \vec{q} = \vec{0}) \right]$$

Retarded correlator

$$G_R(\omega, \vec{q}) \equiv -i \int_{\mathbb{R}^{1,3}} d^4x \, e^{i(\omega t - \vec{q} \cdot \vec{x})} \theta(t) \left\langle \left[\frac{1}{2} T_a^a(t, \vec{x}), \frac{1}{2} T_b^b(0, \vec{0}) \right] \right\rangle$$

Infalling b.c. for metric fluctuations $\psi \equiv h_x^x = e^{-2A(\phi)}h_{xx}$

$$\psi'' + \left(rac{1}{3A'} + 4A' - 3B' + rac{h'}{h}
ight)\psi' + \left(rac{e^{-2A + 2B}}{h^2}\omega^2 - rac{h'}{6hA'} + rac{h'B'}{h}
ight)\psi = 0,$$

Bulk viscosity

S. Finazzo, R. Rougemont, H. Marrochio, JN, JHEP 1502 (2015) 051

Infalling boundary conditions: $\psi(\phi \to \phi_H) \approx Ce^{i\omega t} |\phi - \phi_H|^{-\frac{i\omega}{4\pi T}}$

General formula Gubser, 2009

$$\frac{\zeta}{s} = \frac{\eta}{s} |C|^2 \frac{V'(\phi_H)^2}{V(\phi_H)^2}$$

Parametrization for hydro

$$rac{\zeta}{s}\left(x=rac{T}{T_c}
ight)=rac{a}{\sqrt{\left(x-b
ight)^2+c^2}}+rac{d}{x^2+e^2}$$

			$T_c = 143.8 \text{ MeV}$			
a	b	c	d	e		
0.01162	1.104	0.2387	-0.1081	4.870		

149 0 1/1-17

Bulk viscosity

S. Finazzo, R. Rougemont, H. Marrochio, JN, JHEP 1502 (2015) 051

Small value for this transport coefficient in the QGP

2nd order transport coefficients

The shear relaxation time

S. Finazzo, R. Rougemont, H. Marrochio, JN, JHEP 1502 (2015) 051

Universal formula in the bulk derived in

Obtained from a Kubo formula

$$\tau_{\pi} = \frac{1}{2\eta} \left(\lim_{q \to 0} \lim_{\omega \to 0} \frac{\partial^2 G_R^{xy,xy}(\omega,q)}{\partial \omega^2} - \kappa + T \frac{d\kappa}{dT} \right)$$

Parametrization for hydro

$$au_{\pi}\eta/T^2\left(x=rac{T}{T_c}
ight)=rac{a}{1+e^{b(c-x)}+e^{d(e-x)}+e^{f(g-x)}}$$

			$T_c = 143.8 \; \mathrm{MeV}$				
\overline{a}	b	c	d	e	f	g	
0.2664	2.029	0.7413	0.1717	-10.76	9.763	1.074	

Electric conductivity

(still at zero chemical potential)

S. I. Finazzo and J. Noronha, Phys. Rev. D 89, 106008 (2014).

Model seems to be on the right track for thermodynamics and transport

"Doping" the holographic QGP with quarks

R. Rougemont, J. Noronha-Hostler, JN, PRL 2015.

Suppression of baryon diffusion and transport for collisions in the BES regime

"Doping" the holographic QGP with quarks

R. Rougemont, A. Ficnar, S. Finazzo, R. Critelli, J. Noronha-Hostler, JN, to appear soon

Holography becomes simple when:

- I) The coupling of the QFT, say, $\,\lambda\,$, is $\,\lambda\gg 1$
- II) The number of d.o.f./volume, N, is very large, i.e., N >> 1.

- Applications in different systems ranging from particle physics to condensed matter physics.

STANDARD EXAMPLE

$$\mathcal{N}=4$$
 SU(Nc) Supersymmetric Yang-Mills in d=4

Fields in the adjoint rep. of SU(Nc)

- 16 + 16 supercharges
- SU(4) R-symmetry
- SO(6) global symmetry

$$\beta = 0$$
 CFT!!!!

Maldacena, 1997: This gauge theory is dual to Type IIB string theory on AdS_5 x S_5

Strongly-coupled, large Nc gauge theory

$$N_c \to \infty$$

$$\lambda = R^4/\ell_s^4 \to \infty$$

t'Hooft coupling in the gauge theory Weakly-coupled, low energy string theory

$$g_s \to 0$$

$$\ell_s/R \to 0$$

Universality and perfect fluidity

 $\lambda\gg 1$ in QFT \to string theory in weakly curved backgrounds

d.o.f. / vol. $\rightarrow \infty$ in QFT \rightarrow vanishing string coupling

 T, μ in QFT \rightarrow spatially isotropic black brane

The most general theory in the bulk is:

A theory of gravity (+ other fields) with at most 2 derivatives

$$S = \frac{1}{16\pi G_5} \int d^5x \sqrt{-g} \left(R + \Lambda + \text{other fields}\right)$$
negative

On-shell gravity action → generator of retarded correlators

Son, Starinets, 2002

Linearizing the action $g_{MN} o g_{MN} + \delta h_{MN}$

$$arphi(z) \equiv \delta h_y^x(z)$$
 \longrightarrow $\Box arphi = 0$ $G_R^{xy,xy}$ Massless scalar field coupled to gravity in the bulk Retarded correlator in the gauge theory

Entropy density
$$ightarrow s = rac{ ext{area}}{4G_5}$$

Bekenstein's area law

$$\eta = i \partial_{\omega} G_R^{xyxy}(\omega, \mathbf{0}) \Big|_{\omega=0} = \frac{\text{area}}{16\pi G_5}$$

UNIVERSAL

 $\sigma_{abs}(0) = ext{area}$ Das, Gibbons, Mathur, 1996

Kovtun, Son, Starinets, 2005

$$\frac{\eta}{s} = \frac{1}{4\pi}$$

Universality of black hole horizons

HOLOGRAPHY

Universality of transport coefficient in QFT

Universality of black hole horizons

HOLOGRAPHY

Universality of transport coefficients in QFT

Dissipation of sound waves = Dissipation of black hole horizon disturbances

$$\frac{\eta}{s} = \frac{1}{4\pi}$$

"Doping" the holographic QGP with quarks

Rougemont, Ficnar, Rougemont, Noronha, arXiv:1507.06556 [hep-th] (JHEP).

$$\langle W_{L\times L^-}^{({\rm adjoint})}\rangle \approx \exp\left[-\frac{1}{4\sqrt{2}}\hat{q}L^-L^2\right]$$

Jet quenching parameter

Charged black hole

Predictions for light quark energy loss in a baryon rich medium

Jets should be much more quenched at finite density

Therefore, by classifying the different operators in the d-dimensional theory according to their Lorentz structure we see that

Such that $\Phi(x,a)\mathcal{O}(x)=J(x)\mathcal{O}(x)$ is added to the d-dimensional Hamiltonian and so forth.